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A full-dimensional model of ozone forming
reaction: the absolute value of the recombination
rate coefficient, its pressure and temperature
dependencies

Alexander Teplukhin and Dmitri Babikov*

Rigorous calculations of scattering resonances in ozone are carried out for a broad range of rotational

excitations. The accurate potential energy surface of Dawes is adopted, and a new efficient method for

calculations of ro–vibrational energies, wave functions and resonance lifetimes is employed (which uses

hyper-spherical coordinates, the sequential diagonalization/truncation approach, grid optimization and

complex absorbing potential). A detailed analysis is carried out to characterize distributions of resonance

energies and lifetimes, their rotational/vibrational content and their positions with respect to the

centrifugal barrier. Emphasis is on the contribution of these resonances to the recombination process

that forms ozone. It is found that major contributions come from localized resonances at energies near

the top of the barrier. Delocalized resonances at higher energies should also be taken into account,

while very narrow resonances at low energies (trapped far behind the centrifugal barrier) should be

treated as bound states. The absolute value of the recombination rate coefficient, its pressure and

temperature dependencies are obtained using the energy-transfer model developed in the earlier work.

Good agreement with experimental data is obtained if one follows the suggestion of Troe, who argued

that the energy transfer mechanism of recombination is responsible only for 55% of the recombination

rate (with the remaining 45% coming from the competing chaperon mechanism).

I. Introduction

Atmospheric ozone, O3, is formed as a product of recombination
reaction of oxygen molecules, O2, with oxygen atoms, O, but the
mechanism of this process in not yet entirely understood. In the
past, the energy-transfer mechanism, also known as the Lindeman
mechanism, was assumed almost exclusively,1,2 according to
which a metastable ozone molecule is formed at the first step
of the process, and is stabilized at the second step by collision
with an atom or a molecule of the bath gas (e.g., Ar, N2):

O2 + O - O3*, (1)

O3* + M - O3 + M*. (2)

Here, the role of M is to quench the metastable intermediate O3*,
producing a stable ozone molecule. However, a more recent
analysis of the experimental data3 indicates that this may not be
the only and, in fact, not necessarily the dominant mechanism
of ozone formation. It looks like simultaneously with the energy-
transfer mechanism described above, the so-called chaperon

mechanism, also known as the radical-complex mechanism,
may produce ozone via:

O + M - OM*, (3)

O2 + OM* - O3 + M*. (4)

Here the roles of M are to (non-covalently) bind the oxygen atom,
exchange it with O2 and, finally, carry away the excess energy,
leaving a stable ozone molecule behind. Experimentally it is not
straightforward to tell the difference between these two mech-
anisms since, under the steady state conditions, each of them leads
to the third-order kinetics overall, first order in each [O], [O2] and
[M]. But, based on the analysis of the temperature dependence of
the recombination rate coefficient (in a broad range) Troe3 was
able to determine contributions of each mechanism. For example,
at room temperature and atmospheric pressure, in the air bath,
the contribution of energy-transfer is close to 40%, while the
contribution of the chaperon mechanism is close to 60% of the
total recombination rate. At low temperatures chaperon domi-
nates, while energy-transfer dominates at high temperatures.3

Further justification of this observation should come, ideally,
from the theory side, but, sadly, neither of these two mechanisms
is readily amenable to accurate theoretical treatment, even with
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the simplest M, such as an Ar atom. First of all, the metastable
O3* in reaction (1) and the complex OM* in reaction (3) represent
scattering resonances, characterized by strong ro–vibrational
excitation above dissociation threshold and finite lifetimes. Their
properties have to be determined using quantum mechanics,
which is computationally demanding, particularly in the case of
triatomic O3* where a deep covalent well supports B280 vibrational
bound states (below dissociation threshold), and the rotational
excitation reaches J B 90. Moreover, calculations for rotational
and vibrational quenching of O3* in the process (2), using an
accurate quantum method for inelastic scattering, are far behind
the reach of theorists today. Similarly, the quantum reactive
scattering calculations for the process (4) would be close to
impossible, and have never been attempted.

It is much easier to set up the classical trajectory simulations
for ozone formation, and this has been done for both energy-
transfer and chaperon mechanisms,4,5 but reliability of those
results should not be overemphasized, since application of
classical trajectories for the description of quantum reso-
nances is rather controversial, as well as their validity for the
description of inelastic scattering of O3, where quantum
symmetry and zero-point energy are important. Unavoidably,
theorists had to stay within the quantum framework, trying
various kinds of approximations to ease calculations. Those
efforts are reviewed next.

The energy-transfer mechanisms (1) and (2) received most
attention, because they are believed to be responsible for
anomalous mass-independent fractionation of oxygen isotopes
produced by the recombination process.6–8 The first systematic
calculation of energies and lifetimes of scattering resonances
O3* in reaction (1) was carried out by Babikov et al.9,10 Those
data helped us to understand the origin of the anomalous
isotope effect in ozone,10,11 but were not sufficient for quanti-
tative treatment of recombination kinetics, since they were
obtained for a non-rotating ozone molecule only, J = 0. At about
the same time, Charlo and Clary proposed a dimensionally-
reduced model of energy-transfer in ozone12,13 where, in order
to reduce the number of vibrational degrees of freedom, they
fixed the bending angle in O3 (allowing only the stretching
motion of two bonds) and employed sudden approximation
for O3* + Ar collision (which also restricts consideration to a
non-rotating ozone molecule, J = 0 only). They were the first to
make quantitative predictions of the recombination kinetics for
the energy-transfer mechanism of ozone formation based on
quantum calculations, but some of their results seem to be
controversial. For example, their temperature dependence of the
recombination rate coefficient was positive,13 while it is negative
in the experiment.3 Also, it is not entirely clear how they compen-
sated for the reduced number of states in a model where all
bending states of O3 were missing.12

Xi and Bowman14 improved upon this last point, using a
method very similar to that of Clary, but with all vibrational
degrees of freedom included. In order to make their calculations
affordable, they only considered a minimal number of represen-
tative collision geometries for O3* + Ar encounter. Their results
contributed to the interpretation of the isotope effect at the

qualitative level,14 but the absolute value of the recombination
rate coefficient was not computed. A bit later, Ivanov and
Schinke15 carried out calculations similar to those of Bowman,
but with all the collision geometries sampled appropriately,
and all the partial waves included for convergence. However,
their focus was on state-to-state transitions between the bound
vibrational states (below dissociation threshold) rather than on
scattering resonances. So, the recombination process was not
studied. Note that neither Clary,13 nor Bowman14 or Schinke15

computed lifetimes of O3* resonances. All these calculations
employed the sudden collision approximation for O3* + Ar collision
and were restricted to the J = 0 case only (non-rotating O3*).

Resonance lifetimes for rotationally excited ozone molecules
were computed for the first time by Grebenshchikov and
Schinke,16 for the range J r 40 and Ka r 10, but without any
treatment of the stabilization step (2), just using a strong-
collision assumption for quenching of the metastable O3*
by Ar. They mentioned that this approach allows obtaining
reasonable temperature and pressure dependencies of the recom-
bination rate coefficient, but did not present those data, and did
not report the absolute value of the coefficient (focusing on the
isotope effect, characterized by the ratio of rate coefficients for
different isotopomers).

More recently, we developed a mixed quantum/classical
method for the description of collisional energy-transfer17,18

and applied it to the energy-transfer mechanism of ozone
recombination.19–21 This approach overcomes many difficulties:
sudden collision approximation is avoided and the dynamics of
O3* + Ar scattering is treated in a time-dependent manner,
classically; rotational motion of O3* is incorporated, also classi-
cally, and the rotational quenching of O3* in collisions with M
is computed; vibrational motion of ozone is treated quantum
mechanically, which describes zero-point energy and symmetry
of vibrational modes; scattering resonances are incorporated,
including accurate calculations of their lifetimes.17,21 Using
this approach, we carried out rather massive calculations of
formation, decay, stabilization and dissociation of many individual
ro–vibrational resonances in the dimensionally-reduced model
of O3* where, similar to Clary, we neglected excitation of the
bending mode of ozone.17 Those calculations gave detailed
insight into the recombination process20,21 and, also, allowed
us to derive a simple analytical formula for the description of
energy-transfer in ozone.22

The only serious limitation of our previous work was the dimen-
sionally reduced approximation for O3*. Indeed, if excitation of the
bending mode is not allowed, then the total number of vibrational
states in O3* is smaller (roughly, by a factor of six) compared to the
real ozone molecule, which translates into a lowered recombination
rate.22 In principle, the experimental recombination rate can be
recovered by an ad hoc adjustment (e.g., based on statistical
argument of the density of states, as we did in ref. 21), but it is
certainly desirable to develop a complete treatment of ozone
recombination, including all degrees of freedom.

In this paper we do exactly that. Using a method that employs
hyper-spherical coordinates, the sequential diagonalization–
truncation technique, and complex absorbing potential23

Paper PCCP



19196 | Phys. Chem. Chem. Phys., 2016, 18, 19194--19206 This journal is© the Owner Societies 2016

we compute energies and lifetimes of scattering resonances in a
full-dimensional model of ozone (including its bending motion)
for a broad range of rotational excitations, up to J = 64, Ka r J.
This information, together with the analytic formula for colli-
sional energy-transfer and collision-induced dissociation derived
earlier,22 permits building a more complete version of the
energy-transfer mechanism of ozone recombination. When
complemented by contribution of the chaperon mechanism (as
suggested by Troe3) our results agree well with experimental
data, including the absolute value of the recombination rate
coefficient, its temperature and pressure dependencies.

This study is carried out only for the most abundant isotopically
unsubstituted O3, composed of three 16O atoms, since majority of
experimental kinetics data are available for this isotopic combi-
nation, and since the rates for a variety of isotopically-substituted
ozone species (e.g., 16O16O18O) are always given relative to the rate
of 16O16O16O formation. Similar studies for several other isotopic
combinations will be done in the next step.

II. Theoretical framework
II-A. Reaction mechanism

Kinetics of the processes (1 and 2) is described within the micro-
canonical framework, where different scattering resonances of O3*
are treated as different chemical species.10,12,16 For each scattering
resonance O(i)

3 at energy Ei the processes affecting its population
[O(i)

3 ] are considered and the corresponding rate constants are
introduced. Those are:

(i) Formation of O(i)
3 from O2 + O characterized by the second-

order rate coefficient kform
i :

O2 + O - O(i)
3 ; (5)

(ii) Spontaneous unimolecular decay of O(i)
3 onto O2 + O char-

acterized by the first-order rate coefficient kdec
i :

O(i)
3 - O2 + O; (6)

(iii) Stabilization of O(i)
3 by collision with a bath gas atom

characterized by the second-order rate coefficient kstab
i :

O(i)
3 + M - O3 + M*; (7)

(iv) Collision-induced dissociation O(i)
3 onto O2 + O characterized

by the second-order rate coefficient kdiss
i :

O(i)
3 + M* - O2 + O + M. (8)

The width Gi of quantum scattering resonance O(i)
3 , computed as

explained in Section II-B, gives us directly the value of its decay
rate, k dec

i = Gi. The coefficients k form
i and kdec

i for each scattering
resonance are related to each other through a micro-canonical
equilibrium constant: kform

i = 1
2kdec

i Keq(Ei). Here the factor of 1
2

reflects the fact that while in a symmetric 48O3 there are two
equivalent channels for the decay of resonances, the formation
rate coefficient k form

i is per one entrance channel, simply because
O hits only one side of O2 in a given encounter. The equilibrium
constant Keq(Ei) for each scattering resonance is computed

statistically using a known formula,20 and taking into account a
symmetry number of 1

2 for the partition function of symmetric
reagent 32O2 (in denominator), where only odd rotational states
are allowed. The values of k stab

i and kdiss
i are computed based on

the results of the mixed quantum/classical simulations for O(i)
3 + Ar

collision dynamics,22 as explained in Section II-C.
Assuming steady-state conditions for the concentration of

each state O(i)
3 allows deriving analytic expression for the third-

order recombination rate coefficient of the overall recombination
reaction:

k ¼
X
i

1
2
GiKeq Eið Þ

Gi þ kstabi þ kdissi

� �
½M�

kstabi ; (9)

where the sum is over all scattering resonances O(i)
3 . As explained

above, this recombination rate coefficient is per one formation
channel.

Several processes, less important than (5–8), are neglected in
our treatment of kinetics. Namely, we do not include the
possibility of back excitations, O3 + Ar - O(i)

3 + Ar, assuming
that concentration of the formed ozone [O3] is small. We also
neglect the collision-induced transitions between different
scattering resonances, O(i)

3 + Ar - O( j)
3 + Ar, assuming that

their populations are entirely determined by equilibrium with
reagents O2 + O. These assumptions are reasonable at low and
moderate pressures of the bath gas.

II-B. Energies, widths and wave functions of resonances

A numerical method used to determine the properties of scattering
resonances is reported in detail elsewhere.23 Here we give only
a brief summary. Three vibrational degrees of freedom in O3

are described using adiabatically-adjusting principal-axis hyper-
spherical coordinates r, y and f.24 For low-amplitude vibrations
near the equilibrium geometry of ozone (req = 4.048 Bohr) the
motion along the hyper-radius r corresponds to the breathing
mode in O3. For typical levels of rotational excitation the top
of the centrifugal barrier occurs near r† E 5.4 Bohr. Wave
functions of scattering resonances trapped behind the centrifugal
barrier are localized mostly in the range ro r†. In the asymptotic
(channel) region the motion along r describes dissociation of O3

onto O2 + O. Complex absorbing potential in the form suggested
by Balint-Kurti25 is placed in the range 10 o ro 15 Bohr in order
to absorb the tails of resonant wave functions. Hyper-angles
y and f describe bending and asymmetric-stretching motions
near the equilibrium point. The symmetry of the vibrational wave
function is determined by reflection through f = 0. For symmetric
48O3 vibrational wave functions are either symmetric (A1) or
antisymmetric (A2).

The potential energy surface of Dawes26 was used in our
calculations. Compared to the older surfaces of ozone,9–11,27,28

this new surface has slightly better dissociation energy (compared
to the most advanced experimental data), and slightly different
behavior along the minimum energy path for dissociation (a flat
‘‘shoulder’’, rather than a small submerged ‘‘reef’’), which
gives better agreement with experiment for the atom-exchange
process.29–33 Other than that, the older and new surfaces
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are very similar, and exhibit very similar densities of states
near threshold.34

We found that it is impossible to come up with a 3D-grid that
covers uniformly and efficiently the entire configuration space of
the problem.35 So, a straightforward diagonalization of the
Hamiltonian matrix using a 3D-grid was found to be prohibitively
expensive computationally. In order to make calculations feasible
we employed the sequential diagonalization-truncation approach
of Bačić and Light,36,37 adapted to the hyper-spherical coordi-
nates. Namely, for each value of r on the grid, we determined
solutions of a two-dimensional problem in y and f, and used
those as locally optimal basis sets for efficient representation of
the global 3D wave function (of the given symmetry, separately for
A1 and A2). The grid along r was also optimized to reflect the
shape of the potential energy surface, using a method based
on the local value of de Broglie wave length.38,39 We found that
this combined FBR/DVR approach is very efficient.23 Complex
eigenvalues E � iG/2 and wave functions of the reduced matrix
were computed using the ScaLAPACK package.40 Instead of the
scattering approach (coupled-channel, often used in conjunction
with hyper-spherical coordinates), we solved a 3D-eigenvalue
problem, with complex absorbing potential introduced in the
asymptotic range of the PES. All details of our method will be
given in the forthcoming methodological paper.23

Similar to the previous work by Grebenshchikov and Schinke,16

we adopted the centrifugal-sudden approximation, known also
as symmetric-top rotor approximation, or K-conserving approxi-
mation (where K is projection of total angular momentum J onto
the first principal axis of inertia, i.e. K = Ka, for each instantaneous
molecular configuration). This is the only approximation used
here. It involves neglecting the Coriolis coupling term in the
Hamiltonian operator, but also neglecting the asymmetric-top
term (A � B)/2 in the rotational potential. As was emphasized by
Parker and Pack,41 these two simplifications constitute one single
approximation, and have to be made simultaneously in order to
decouple rotational and vibrational degrees of freedom. Thus,
our calculations were done independently for different values of
Ka r J. Vibrational wave functions of both symmetries, A1 and A2,
were retained, since they would contribute to solutions of differ-
ent parities in the exact fully-coupled approach, except the case
of Ka = 0, when only A2 solutions were kept for J = 0, only A1

solutions for J = 1, then, again, only A2 solutions for J = 2, and so
on (see for example, ref. 34). Note that states of symmetry E are
not physically allowed for 16O16O16O, since in this case the wave
function must be symmetric with respect to permutation of any
two oxygen atoms. Thus, E-symmetry states were excluded from
calculations, by restricting the range of hyper-angle f to one well
only, 1201 r f r 2401.

Typically, the Coriolis coupling is non-negligible in the
‘‘floppy’’ molecules only. In the ‘‘stiff’’ molecules, such as ozone,
neglecting this coupling term is well justified and has been done
in the past by other authors.16 If needed, the action of this term
onto wave function can be rigorously evaluated.41,42 In the future
we plan testing the effect of Coriolis coupling by including it, at
least, for the states with small K values (e.g., K o 7), while
neglecting it for larger K.

II-C. Stabilization and dissociation rates

Rate coefficients for stabilization kstab
i of scattering resonances

O(i)
3 are obtained from the corresponding cross sections:

kstabi ¼ sstabi

8kT

pm

� �1=2

: (10)

where m is O3 + Ar reduced mass, and similar for the kdiss
i – rate

coefficient for the dissociation of O(i)
3 . In our previous work we

generated several sets of data that are used here to compute
sstab

i (Ei) and sdiss
i (Ei).

First of all, one can use the analytical formula obtained in
ref. 22 to represent on average a large amount of data obtained
for stabilization of various scattering resonances in four differ-
ent isotopomers of ozone. In that case, for a resonance at
energy E above dissociation threshold, the value of stabilization
cross section is given by

sstabðEÞ ¼ sstab0 exp �E
g

� �
þ c exp �E

d

� �� �
: (11)

The values of parameters sstab
0 , c, g and d for this model can be

found in Table 2 of ref. 22. A slightly different fit22 of the same
data uses two variables, E and Evib:

sstab E;Evib
� �

¼ sstab0 exp �E
g

� �
þ c exp �E

d

� �� �

� 1� Av

1þ Evib=kTð Þ2

 !
:

(12)

Here Evib is vibrational energy of the resonance, which is total
energy E less rotational energy, and Av is one more fitting
parameter.22 This formula reflects observation that the stabili-
zation process is influenced by the balance between vibrational
and rotational content of the resonance. Namely, stabilization
cross sections are larger for those states where rotational
excitation is larger, because rotational energy is exchanged
more readily in a typical O(i)

3 + Ar collision. Eqn (11) and
(12) will be referred to as versions a and b of Stabilization
Model 1, or SM1a and SM1b. The average dissociation cross
section of a resonance at energy E is computed using the
following formula:20

sdissðEÞ ¼ sdiss0 1þ tanh
E � Ediss

0

� �
gdiss

� �� �
; (13)

and a set of parameters sdiss
0 , E0

diss and gdiss that can be found in
ref. 22.

Alternatively, one can use the results of ref. 20, where we
determined the energy-transfer functions �si

tran(DE) for several
individual resonances (ten representative states) and fitted each
separately by a double-exponential analytic model (see Fig. 7
in ref. 20 for examples of such energy-transfer functions and
Table 4 in ref. 20 for the values of fitting parameters). Such
energy-transfer functions �stran(DE), measured in the units of
a0

2/cm�1, can be analytically integrated through the range
[�N; �E] in order to obtain stabilization cross sections, in the
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units of a0
2, for a resonance at energy E above the dissociation

threshold:

sstabðEÞ ¼
ð�E
�1

�stran E0ð ÞdE0: (14)

Employing the data for ten different resonances studied in
ref. 20 we introduce some range of typical values for the
stabilization cross section sstab(E), rather than one definite
number. This approach is further referred to as Stabilization
Model 2, or SM2.

So, in this work the stabilization cross sections are not
computed for each individual resonance (e.g., by solving the
O(i)

3 + Ar collision problem numerically), rather they are obtained
approximately, by substituting resonance energy E (and Evib for
SM1b) computed in Section II-B, into analytic expressions of
eqn (11)–(13). Note, however, that parameters of eqn (11)–(13)
were determined in the earlier work,22 based on the mixed
quantum/classical modeling of O(i)

3 + Ar collisions.

III. Results and discussion
III-A. Properties of resonances

In this section we analyze the collective properties of resonances
in O3* with emphasis on their contribution to the overall process
of recombination, rather than the properties of individual reso-
nances, simply because hundreds of resonances are involved.
Thus, the histogram of Fig. 1a represents contribution of reso-
nances to the recombination rate coefficient k, eqn (9), as a
function of resonance energy above the dissociation threshold of
O3 (which includes ro–vibrational zero-point energy of the O2

product in the asymptotic/channel range). We see that the
maximum of this distribution is close to Ei = 100 cm�1. Lower
energy resonances (closer to threshold) contribute less. The tail of
distribution extends up to Ei = 800 cm�1. Similarly, the histogram
of Fig. 1b represents the distribution of resonance widths, and we
see that major contributions to the recombination rate coefficient
k come from resonances characterized by widths in the range
10�2 o Gi o 10 cm�1, with maximum of the distribution around
Gi E 1 cm�1.

Fig. 2 allows seeing a correlation between energy Ei and
width Gi of resonances, again, with the focus on those states
that are important for the recombination process. Color in
Fig. 2 indicates contribution to the recombination rate coeffi-
cient k. Fig. 1a and b are projections of the data in Fig. 2 onto
horizontal and vertical axes, E and G, respectively. Distribution
of Fig. 2 is not particularly broad: the most intense part of it
spans only the 300 cm�1 range of resonance energies and three
orders of magnitude range of resonance widths.

Fig. 3 represents contribution of different rotational excitations
to the recombination process. Color indicates the value of k(J,Ka)
obtained using eqn (9) where summation was carried out over the
vibrational states only, within each rotational state characterized
by J and Ka. The distribution in Fig. 3 indicates that the most
important contributions to the recombination process come
from rotational excitations in the range 8 o J o 38 and K o 7,
which is close to the range studied by Grebenshchikov and

Schinke.16 Since many vibrational states are included, the
distribution of Fig. 3 is rather shapeless. Two (not particularly
well pronounced) maxima barely seen in Fig. 3 correspond to
the states of symmetries A1 and A2 that exhibit slightly different
properties. Note that low rotational excitations, say J o 5, make
only a negligible contribution to the process. This means that
any prediction or analysis based on calculations for J = 0 only
(non-rotating O3) is likely to be inaccurate, or may even be
qualitatively wrong. Importantly, calculations with J 4 45 are
not really needed.

Vibrational content of resonances in O3* can be analyzed
by determining the state number of the resonance within
progression of vibrational states computed for given values of
J and Ka, and by matching energy of the corresponding state in the
spectrum of non-rotating ozone (can be thought of as vibrational
energy of the resonance). The distribution of state numbers is
given separately for symmetries A1 and A2 in two frames of Fig. 4.
We see that most significant contributions to the recombination
process come from the state number 120-to-155 of symmetry A1,
and the state number 90-to-115 of symmetry A2. Note that a non-
rotating ozone molecule has 163 states of symmetry A1, and
125 states of symmetry A2 (using the PES of Dawes26). This
means that upper vibrational states, closest to the dissociation

Fig. 1 Contributions of scattering resonances to the recombination rate
coefficient k as a function of (a) resonance energy Ei above the dissocia-
tion threshold; and (b) resonance widths Gi.
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threshold, are more important for the recombination process.
In Fig. 5 we gave a distribution of energies of these states,
relative to the dissociation threshold, for both symmetries
combined. This histogram shows that dominant contributions
to recombination come from vibrational states in the range
600 cm�1 below the dissociation threshold. Such states contain
10 to 13 quanta of vibrational excitation distributed between
three modes. Typical examples include 6 to 8 quanta of bending
and/or asymmetric stretching, and 4 to 5 quanta of symmetric
stretching. Some states have only two modes excited (e.g.,
11 quanta of y and 1 quanta of f), or even a single mode
(e.g., 12 quanta of bending). Properties of these vibrational states,
including a detailed analysis of their wave functions, are reported
elsewhere.23

Further insight comes from analyzing where these resonances
are (in terms of their energy) relative to the top of the centrifugal
barrier. The effective barrier E† along the dissociative coordinate
r can be defined for given J and Ka as the maximum value of the
ground vibrational state in the two-dimensional eigenvalue
problem solved for non-dissociative coordinates y and f. Since
the PES of ozone has no activation barrier for O2 + O - O3, the
value of E† remains negative at lower levels of rotational
excitation, forming a submerged ‘‘reef’’ rather than a barrier.
At higher levels of rotational excitation E† shows up above the
dissociation threshold. (The borderline cases E† = 0 are found
at J = 25, Ka = 0, or J = 20, Ka = 6, or J = 12, Ka = 8, etc. The exact
position of this border is sensitive to the shape of the PES.26)

Thus, Fig. 6 gives correlation between the resonance lifetime
Gi and the offset of resonance energy from this effective barrier
top: dEi = Ei � E†. Color indicates contribution to the recombi-
nation rate coefficient k. We see that some contribution, around
9%, comes from resonances at energies within 50 cm�1 below
the barrier top. These can be populated by tunneling only
and, consequently, exhibit narrower widths, on the order of
Gi E 10�2 cm�1. Resonances at energies within 150 cm�1 above
the barrier top make the largest contribution to recombination.
They are broader, 10�2 o Gi o 10 cm�1, and can be populated
by redistribution of vibrational energy within the three modes
of O3*, rather than tunneling.

Finally, Fig. 7 presents correlation between dEi and the
probability of finding the system behind the centrifugal barrier,

Fig. 2 Contributions of scattering resonances to the recombination rate
coefficient k as a function of both resonance energy Ei and width Gi.
Projections of this 2D distribution onto horizontal and vertical axes gives
Fig. 1a and b, respectively.

Fig. 3 Contributions of scattering resonances to the recombination rate
coefficient k as a function of rotational excitation (J, K). Step size DJ = DK = 2
was used in the range 12 r J r 36 and K r 4; it was doubled in the range
J r 44 and K r 16 and doubled again in the range J r 64 and K r 32.
Contributions of all other rotational excitations were linearly interpolated
between the computed points.
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over the well region. This moiety, called here the well prob-
ability and denoted by pw, is obtained by integrating the square
modulus of wave function through the range 0 r r r r†.
In Fig. 7 we see that for typical resonances at energies slightly

below the top of the centrifugal barrier or somewhat above it, this
probability exceeds pw = 0.7. However, many higher energy
resonances are more delocalized. Their contribution to the
recombination process is not negligible, around 30%. A schematic
in Fig. 8 is used to demonstrate this concept. It shows examples of
wave functions for three resonances: one sitting deep and behind
the centrifugal barrier, one near the top of the barrier, and one
significantly above the top of the barrier.

The data presented in Fig. 1–7 can be summarized and
interpreted in the following way: scattering resonances that
participate in the recombination process represent upper bound
states of non-rotating ozone (600 cm�1 below dissociation thresh-
old) that are ‘‘lifted’’ by rotational excitation to energies above the
dissociation threshold (around 100 cm�1), where these states can
be populated from O + O2. Most important contributions to the
recombination process come from resonances at energies just
slightly below or somewhat above the top of the centrifugal
barrier (�50 o dEi o 150 cm�1) and at moderate levels of
rotational excitation (8 o J o 38). Widths of such resonances
are not too small (10�2 o Gi o 10 cm�1), and their wave
functions are localized dominantly over the covalent well, behind
the centrifugal barrier (pw 4 0.7).

Indeed, on the lower energy side, resonances that sit too deep
and behind the centrifugal barrier exhibit too narrow widths
G o 10�2 cm�1, and contribute very little to recombination,
according to eqn (9). On the higher energy side, the resonances
at energies too far above the centrifugal barrier, although may
be rather broad (even exceeding G E 10 cm�1), they exhibit

Fig. 4 Contributions of scattering resonances to the recombination rate
coefficient k as a function of the state number in a progression of (a)
symmetric and (b) anti-symmetric vibrational states. Only resonances
localized in the well are included.

Fig. 5 Contributions of scattering resonances to the recombination rate
coefficient k as a function of vibrational energy. Only resonances localized
in the well are included. Both symmetries are combined.

Fig. 6 Contributions of scattering resonances to the recombination rate
coefficient k as a function of resonance energy relative to the top of the
centrifugal barrier (dEi in the text) and the resonance width Gi.
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smaller stabilization cross sections because they are delocalized
over the large range of r, which reduces the probability of their
stabilization into the covalent well (pw o 0.7). Moreover, at lower
levels of rotational excitation (J o 25) the top of the effective
centrifugal barrier is still submerged below the dissociation limit
(E† o 0) which, again, makes resonances too delocalized. Finally,
at higher levels of rotational excitation J 4 40 the Boltzmann
factor shuts off the recombination process. So, it appears that
only at moderate levels of rotational excitation and only at
energies near the top of the centrifugal barrier the resonances
of O3 are efficiently populated by O + O2 collisions and are
efficiently stabilized by Ar collisions. Widths of such resonances
are neither too narrow nor too broad, as one can see from Fig. 1b,
2 and 6.

III-B. Absolute value of the recombination rate coefficient

The main (future, not immediate) goal of our efforts is to
understand the anomalous isotope effect of ozone formation
observed by the Mauersberger group and reported in a series of
papers (see, for example ref. 7 and 8, review articles ref. 1 and 2
and references therein). The majority of those studies were carried
out at room temperature T = 296 K and pressure P = 200 Torr, in
the Ar bath gas, which translates into [M] = 6.53 � 1018 cm�3.
Under these conditions the total rate coefficient for ozone

recombination is kTOT = 42 � 10�35 cm6 s�1.43 According to
the analysis of Troe3 the contribution of the energy-transfer
mechanism should be around kET = 23 � 10�35 cm6 s�1 (close
to 55% of the total rate). This is the value we are trying to
reproduce by calculations.

The only other work, where the absolute value of the recom-
bination rate coefficient obtained from quantum mechanics was
reported, is the paper of Charlo and Clary.13 Their calculations
gave k = 13 � 10�35 cm6 s�1, although it is not entirely clear
whether this value was taken directly from the dimensionally-
reduced model, where the bending states are missing, or, it
already includes a correction to account for the missing states
(which would be a reasonable thing to do). Also, within a model
based on classical trajectory simulations Schinke and Fleurat-
Lessard4 were able to reproduce the overall experimental value of
kTOT but empirically, by adjustment of stabilization efficiency
(coefficient D = 350 cm�1 in their theory). To the best of our
knowledge, these are the only two theoretical predictions of the
recombination rate coefficient available in the literature. In all
other papers on ozone the workers either were interested in the
ratio of the recombination rates for different isotopomers, or
looked at other processes, such as atom exchange or ro–vibrational
energy transfer (so, did not report the absolute value of recombi-
nation rate coefficient).

In our case the less certain component of recombination
theory is the stabilization step, or, more precisely, the values
of sstab

i . Several models developed in our previous work (as
explained in Section II-C) are tested here by comparison vs. the

Fig. 7 Contributions of scattering resonances to the recombination rate
coefficient k as a function of resonance energy relative to the top of the
centrifugal barrier (dEi) and the probability of the corresponding wave func-
tion over the well region. The boundary between resonances localized in the
well and delocalized resonances is depicted with a dashed line at pw = 0.7.

Fig. 8 Three types of resonances observed in our calculations: narrow
resonance trapped behind the centrifugal barrier (E = 51.1 cm�1,
G = 3.6 � 10�4 cm�1), typical resonance slightly near the barrier top
(E = 130.0 cm�1, G = 0.16 cm�1), and a highly delocalized state above the
barrier (E = 202 cm�1, G = 15.5 cm�1). The barrier top is at 115.7 cm�1,
rotational excitation is J = 32, K = 0.
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experimental value of kET. The results of these tests are presented
in Table 1. We see that all stabilization models give the recombi-
nation rate coefficient k of correct order of magnitude. Namely,
the first column in Table 1 shows that the values of k obtained
using SM1a and SM1b models fall between the minimum and
maximum limits predicted by SM2. This makes sense, since
SM1a and SM1b were constructed to represent stabilization
cross sections on average, while SM2 represents the possible
range. As for comparison with experiment we see that our
predicted rate coefficients are somewhat smaller. Even the upper
limit given by the SM2 model, k E 16.1 � 10�35 cm6 s�1, is only
70% of the experimental value of kET (although it is very close to
the result of Clary13).

Trying to find the missing piece we noticed that the lowest energy
scattering resonances O(i)

3 do not contribute to recombination.
Qualitatively, they sit so deep and behind the centrifugal threshold
that they can’t be populated in a typical O2 + O collision, just
because heavy particles can’t tunnel through wide barriers (see
Fig. 8). Quantitatively, in the limit Gi { (kstab

i + kdiss
i )[M] the

contribution of each resonance, according to eqn (9), simplifies
to the following expression: ki E 1

2GiKeq(Ei)/[M]. This shows
clearly that resonances with negligible widths Gi make negligible
contributions to recombination. Thus, they should be considered
as bound states, rather than scattering resonances. Removing these
states from the list of resonances does not reduce the value of the
recombination rate coefficient much, but this modification ‘‘lifts’’
the bound state threshold, leading to more efficient stabilization of
the remaining (higher energy) scattering resonances, since now the
required energy-transfer DE is effectively reduced for them. We
found that (at this pressure) the resonances with widths below
Gi E 10�2 cm�1 can be considered as effectively bound states. This
adjustment, which represents an improved version of SM2, called
SM20 hereafter, permits increasing the maximum limit of the
recombination rate coefficient to k E 19.4 � 10�35 cm6 s�1

(bottom of the first column in Table 1), which is about 84% of
the experimental value of kET = 23 � 10�35 cm6 s�1, and is still
not quite sufficient.

Searching for the still missing piece we realized that we took
into consideration, so far, only resonances that are localized
mostly over the covalent well, inside the centrifugal barrier,
rather than outside (see Fig. 8). As we showed in Section III-A
above, for typical resonances at energies slightly below the top of
the centrifugal barrier or slightly above it, the value of well
probability pw exceeds 0.7 or so. Consequently, the results given

in the first column of Table 1 were obtained including only
localized resonances, with pw 4 0.7. However, many higher energy
resonances are more delocalized, characterized by pw o 0.7.
Although energies and lifetimes of these states are available from
our calculations, it appears that including them into consideration
of recombination kinetics is not straightforward, because our
stabilization models (SM1 and SM2) were set up for the localized
states only.20,22 From ref. 19 we know that transitions from the
outside of the centrifugal barrier into the states localized in the
well are very weak. So, using SM1 and SM2 for delocalized states
would be incorrect and would, certainly, overestimate the value of
the recombination coefficient k (we checked this by calculations).

It makes sense, however, to use SM1 and SM2 for only a
portion of the delocalized resonance, namely, for that piece of it
that sits inside of the centrifugal barrier. This is equivalent to
multiplying stabilization cross section by the well probability p.
So, for the localized states (characterized by pw 4 0.7) we use SM1
and SM2 straight, whereas for delocalized states (pw o 0.7) we
reduce the value of stabilization cross section proportionally to
the well probability p. Recombination rate coefficients computed
in this way, with delocalized states included, are given in the
second column of Table 1. They are somewhat higher than those
in the first column of Table 1. Predictions of SM1a and SM1b are
still somewhat below the experimental value of kET, but the upper
limit of the SM2 model with delocalized states included is now
k = 22.7 � 10�35 cm6 s�1, which almost reaches the experimental
value of kET = 23� 10�35 cm6 s�1. Finally, the upper limit of SM20

is now k = 27.0� 10�35 cm6 s�1, which is above the experimental
value of kET. So, in this final form of our theory, the experimental
value of kET is within the ranges predicted by the SM20 model.

The following conclusion can be drawn from the data
presented in Table 1. In order to reproduce the experimental
rate coefficient for ozone recombination we had to take deloca-
lized resonances into consideration. It is also important to treat
the low-energy resonances as bound states, but this is not
sufficient by itself. Only when those two effects are both included,
the experimental value of the recombination rate coefficient is
recovered by the SM20 model of stabilization. In what follows we
will use this approach as the working model, but, for comparison,
we will also present results obtained using the simplest SM1a
model (with delocalized states included), which gives the rate
coefficient just 17% below the experimental value of kET. Note
that in Fig. 1–3, 6 and 7 were generated using SM1a with
delocalized states included. Fig. 4 and 5 were generated using
SM1a without delocalized states (since it is harder to make
connection between the highly excited delocalized scattering
resonances and the bound states of a non-rotating ozone
molecule).

III-C. Pressure dependence

Pressure dependence of the third-order rate coefficient for ozone
formation is known to be weak. So, it is usual to plot, as a
function of pressure, the product k � [M], which represents the
second-order rate coefficient for recombination of O2 with O.
Its pressure dependence is expected to be roughly linear. Fig. 9
presents experimental data from ref. 36 and 37 in a broad range

Table 1 Recombination rate constant k (10�35 cm6 s�1) for the energy
transfer mechanism

Model Localized resonancesa All resonancesb

SM1a 13.4 19.1
SM1b 9.4 12.2
SM2 5.6–16.1 8.3–22.7
SM20 8.1–19.4 11.6–27.0

Experiment 23

a Includes states with fraction in the well more than 70%. b Includes all
states where contribution of delocalized states is multiplied by fraction.
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of pressure values, for three representative temperatures.
We focus on frame b of this figure, since that temperature,
T = 300 K, is very close to the temperature in experiments of the
Mauersberger group. For completeness, the value of the recom-
bination rate coefficient given by Mauersberger and co-workers43

is also shown in Fig. 9b, at low pressure P = 200 Torr.
Our predictions of kET � [M], computed using the SM1a and

SM20 models of stabilization, are shown on these figures too
(yellow line and green range). As expected, the results of the SM1a
model are within the range of the SM20 model, and show the
same pressure dependence. The dependence starts roughly

linear, but it falls off at higher pressure. This behavior is typical
to the energy-transfer (Lindeman) mechanism of recombination.
It is explained by competition between two terms in the denomi-
nator of eqn (9), namely, between the spontaneous decay of
scattering resonances and their collision-induced stabilization.
At high pressure one can neglect Gi in the denominator of
eqn (9), which leads to ki � [M] E 1

2GiKeq(Ei) for each resonance.
This means that the value of kET � [M] stops increasing with
pressure, it decreases, just as shown in Fig. 9. Such behavior
was also observed by Marcus and co-workers in their model of
ozone formation,46 and by Pack et al.47 in their studies of the
Ne + Ne + H - Ne2 + H recombination process.

Note, however, that the experimental data in Fig. 9 hardly
show any decrease. As discussed above, the analysis of Troe3

indicates that in the experiment the recombination process
involves both the energy-transfer and the radical-complex (cha-
peron) mechanisms. Therefore, in order to compare with experi-
ment, we added to our k � [M], predicted here by calculations,
the contribution of radical-complex kRC � [M], determined by
Troe3 from the analysis of experimental data. The total rate is
shown by blue line with red range in Fig. 9, and we see that it is in
good agreement with experiment, both in terms of the absolute
value and pressure dependence, in a broad range.

Moreover, our calculations show similarly good agreement
with experimental data for pressure dependence at slightly
elevated and slightly reduced temperatures: T = 373 K and
T = 213 K, respectively. This is illustrated by Fig. 9a and c. The
fall off is more pronounced at lower temperature, and is barely
visible at higher temperature. In either case, the total of energy-
transfer and radical-complex contributions agree well with the
experiment in a broad range of pressure values, and for all
three values of temperature.

III-D. Temperature dependence

Initially, we did not plan to study temperature dependence of the
recombination rate coefficient. For this, strictly speaking, one has
to compute temperature dependence of stabilization cross sec-
tions, but we did not really do that. Our previous mixed quantum/
classical calculations of energy-transfer20–22 were carried out at
room temperature only. However, reasonable agreement with
experiment in all three frames of Fig. 9, that cover the tempera-
ture range 213 r T r 373 K, indicates that we can try to explore
the temperature dependence, at least in a narrow range of couple
hundred degrees Kelvin. Furthermore, quantum calculations of
temperature dependence of stabilization rate coefficients by
Charlo and Clary12 showed that those depend only weakly on
temperature, even in a much broader temperature range. Similar
conclusions were drawn by Ivanov and Schinke,48,49 based on
classical trajectory simulations.

So, we decided to check what temperature dependence is
predicted by our calculations. Fig. 10 shows experimental data
available for the third-order recombination rate coefficient
through a broad range of temperatures, as summarized by
Troe.3 Our predictions, obtained using SM1a and SM20 models
for stabilization, are also shown in Fig. 10. Yellow line with green
range is used for k(T) based on the energy-transfer mechanism

Fig. 9 Pressure dependence of the second-order recombination rate
coefficient k � [M] for three temperatures: (a) 213 K, (b) 300 K and
(c) 373 K. Yellow line with green range corresponds to the energy transfer
mechanism alone, while blue line with red range represents the total rate
coefficient, with chaperon contribution added. Black symbols depict
experimental data: circles (ref. 44), star (ref. 43) and squares (ref. 45).
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alone, while blue line with red range is used for the total of our
k(T) plus the kRC(T) contribution, as reported by Troe.3 We see
that temperature dependence of the total recombination rate is
in very good agreement with experiments. The temperature
dependence of the kET(T) alone is not available from the
experiment, but it can be estimated (extrapolated) from the
high-temperature data, where the contribution of the radical-
complex mechanism is expected to vanish. This extrapolation is
shown by black line in Fig. 10. We see that our prediction of
temperature dependence for the energy-transfer mechanism alone
is also in reasonable agreement with experimental information.
Better agreement is hard to achieve, due to the nature of
extrapolation, but also due to a significant spread of experimental
data in the high temperature range, as one can see in Fig. 10.

It is usual to fit experimental or theoretical data for temperature
dependencies by T�n functions. We also did this, using different
models for the stabilization process. Our results are summarized
in Table 2, together with other theoretical predictions from the
literature, and available experimental data. The first column of
Table 2 gives the values of n for the energy-transfer mechanism
alone. Predictions of SM1a and SM2 models are slightly below the
experimental value of n = 1.5, while prediction of SM1b is slightly
above it. A larger deviation from the experimental value of n
was observed in the work of Grebenshchikov and Shinke16 where
n = 2.1 was reported, which is close to the temperature depen-
dence of the total recombination rate coefficient. Charlo and

Clary13 had negative temperature dependence, n = �0.64, due to
the artifact of the older potential energy surface. Schinke and
Fleurat-Lessard4 obtained n = 1.5, but only after empirical
adjustment of the damping coefficient in their classical (trajectory
based) approach.

The second column in Table 2 reports the values of n obtained
for temperature dependence of the total recombination rate
coefficient which, again, includes our computed contribution
of the energy-transfer mechanism, plus the contribution kRC(T)
of the radical-complex mechanism as reported by Troe.3 The
experimental value of n = 2.2 is in the ranges predicted by SM2
and SM20. The prediction of SM1a is somewhat lower than the
experimental value, while prediction of SM1b is somewhat
above it. The experimental value of n = 2.7 reported in the
earlier work50 is closer to the prediction of SM1b and the upper
limit of SM2.

III-E. Discussion

Comparison of our results vs. experimental data is very good.
We should admit, however, that the less certain component of
our theory, the stabilization step, is still described approximately,
by a simple analytic energy transfer model (several variations of
which have been tested above). Alternatively, one may wish to use
accurately computed stabilization and dissociation cross sections
for each individual resonance, which could be regarded as the
exact approach to the problem. In fact, we did such calculations
in our earlier work, but only for the dimensionally-reduced model
of an ozone molecule (with bending states omitted) and within
the framework of the mixed quantum/classical theory. Similar
quantum/classical calculations for stabilization of individual
ro–vibrational states within the full-dimensional description of
the ozone molecule would be extremely demanding, while the
full-quantum scattering calculations would be computationally
unaffordable. So, for now, we decided to explore what can be
learned using those simpler models for the stabilization step.

Although in this work we tested several models of the energy
transfer, note that we did not tune any parameters in these
models (e.g., trying to reproduce experimental data). Instead,
we explored all possible sources of contributions to the recom-
bination process. But, in principle, someone may want to ask

Fig. 10 Temperature dependence of the recombination rate coefficient k
at P = 0.1 bar. Yellow line with green range corresponds to the energy
transfer mechanism alone, while blue line with red range represents the
total rate coefficient, with chaperon contribution added. The original
figure, containing combined experimental data, was taken from the paper
by Troe, ref. 3. The long black line is an experiment-based estimation of
the ET rate coefficient.

Table 2 Temperature dependence T�n of the recombination rate
constant

Model

ET mechanism ET + RC mechanisms

Localized
resonancesa

All
resonancesb

Localized
resonancesa

All
resonancesb

SM1a 0.96 1.09 2.16 2.10
SM1b 1.55 1.72 2.66 2.65
SM2 1.00–1.37 1.12–1.49 2.16–2.69 2.09–2.62
SM20 0.86–1.15 0.98–1.28 2.01–2.48 1.95–2.42

Ref. 16 2.1
Ref. 4 1.5
Ref. 13 �0.64
Experiment 1.5 2.22 (2.7)

a Includes states with fraction in the well more than 70%. b Includes all
states where contribution of delocalized states is multiplied by fraction.
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a question: could it be that slight variation of model parameters
would permit reproducing the total experimental rate coefficient
by the energy-transfer mechanism alone, without any involve-
ment of the chaperon mechanism? Well, in order to reach the
value of kTOT = 42 � 10�35 cm6 s�1 within the current approach
and using SM1a (with delocalized states included) we would
have to increase the value of sstab

0 in eqn (11) by a factor of 2.5,
and, it would be problematic to find a justification for this.
In fact, our stabilization cross sections are already rather large.
Comparisons can be made with the thermal stabilization rate
coefficient reported by Clary,12 4.92 � 10�11 cm3 s�1, and with
the energy transfer function reported by Schinke (see Fig. 2 in
ref. 49). We checked and found that the corresponding numbers
in our calculations are larger than those of Clary by a factor of
three, and, larger by a factor of four than those of Schinke.
So, we would be very hesitant to ‘‘tune’’ stabilization cross section
without any justification, just in order to fit the experimental
value of kTOT. Inclusion of delocalized resonances, and treating
narrow resonances as bound states, permitted us to reach the
level of experimental kET, but not the level of experimental kTOT.
We conclude that within the energy-transfer mechanism, we can’t
find any other possible source of additional contribution to
recombination.

Moreover, we checked and found that a straightforward
increase of sstab

0 by a factor of 2.5 does not resolve all problems,
because it leads to incorrect pressure and temperature depen-
dencies. We tried this, and it appears that the resultant pressure
dependence would exhibit a pronounced fall-off in the high-
pressure regime, which contradicts with experiments. Quanti-
tatively, at pressure P = 103 bar the rate coefficient would be
3.1 times smaller than the experimental value. The temperature
dependence would also be way too weak, with n = 1.06.

Furthermore, recall that as we explained above, in the high-
pressure limit eqn (9) simplifies, giving ki � [M] E 1

2GiKeq(Ei)
which is independent of kstab

i at all! So, it does not matter which
stabilization model is used, and how accurate it is. If the
resonances (number of states, their energies and lifetimes) are
computed using accurate treatment of O3, then this information
alone sets up the high-pressure limit of the recombination rate,
and there is no need to consider the Ar + O3 collision process.
Since here the treatment of resonances in O3 is rather accurate,
but the high-pressure rate coefficient is still 3.1 times smaller
than the experiment, it means that there must be some addi-
tional contribution to recombination, other than the energy
transfer mechanism. From our point of view this is the stron-
gest argument in support of the chaperon mechanism.

So, it appears that in order to reproduce experimental data
one must involve the chaperon mechanism, as we did here, using
the fitting parameters of Troe.

IV. Conclusions

In this paper we presented rigorous calculations and a detailed
analysis of scattering resonances in ozone, for a broad range
of rotational excitations. We adopted a recently developed

accurate potential energy surface,26 and developed an efficient
method for calculations of ro–vibrational energies, wave functions
and resonance lifetimes23 (using hyper-spherical coordinates, the
sequential diagonalization/truncation approach, grid optimization
and complex absorbing potential). The distribution of resonance
energies and lifetimes was discussed, as well as their rotational
and vibrational content, and even other interesting features, such
as positions of resonances with respect to the centrifugal barrier
(both energetically and in terms of the probability distribution).
Correlations between many of these properties were visualized
with emphasis on the contribution of resonances into the recom-
bination process.

This accurate information was augmented by the energy-
transfer models derived earlier for stabilization and dissociation
of scattering resonances,20,22 in order to predict the absolute
value of the recombination rate coefficient and determine its
pressure and temperature dependencies. Our results offer strong
support for the work of Troe,3 who argued that the energy transfer
mechanism of recombination, the Lindeman mechanism, is just
one of two mechanisms forming ozone. The recombination rate
coefficient that we obtained for the energy-transfer mechanism at
room temperature in Ar bath gas (using the simplest stabilization
model SM1a) is about 45% of the total rate coefficient measured
in the experiment. An alternative version of the stabilization
model, SM20, gives the range of values 30–63%. These match
nicely with the conclusion of Troe, who derived that it should
be close to 55%. Furthermore, both experimentally determined
pressure dependence of the rate coefficient (in a broad range)
and its temperature dependence (in the narrower range) are
reproduced well, if we add to our data the contribution of the
chaperon mechanism, as derived by Troe.

In our calculations we found that it is important to include
broader delocalized resonances at higher energies into consid-
eration, since their contribution is not negligible. In the future,
a model for the stabilization of such resonances, more accurate
than the one adopted here, is desirable. It was also important to
treat the low-energy narrow resonances (trapped deep and
behind the centrifugal barrier) as bound states, which increases
stabilization rates for the most important resonances at energies
near the top of the barrier. In the future, one could try to
implement solution of the master equation, in order to have
these effects included automatically and more rigorously.

The accurate description of the energy-transfer mechanism
of ozone formation is important for understanding anomalous
enrichments of various isotopomers of ozone (there are 36
isotopically distinct variants of this reaction, see Table 1 in ref. 8).
Our next step will be to repeat, for several isotopic substitutions,
all the calculations reported in this paper, hoping that the isotope
effects will emerge in calculations, which would help understand
its origin.
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